

LINCOLN-ELIOT ELEMENTARY SCHOOL

DESIGN REVIEW COMMITTEE MEETING

NEWTON, MA

14 SEPTEMBER 2022

PREPARED FOR

David Fleishman, Superintendent

AGENDA /

DESIGN UPDATES

- » SITE PLAN
- » FLOOR PLANS

2 AUDITORIUM VISIONING UPDATE

BUILDING PERFORMANCE

- » BUILDING ENVELOPE
- » ENERGY & LCCA
- » WATER REUSE LCCA
- » EMBODIED CARBON LCA

DESIGN UPDATES SITE PLAN FLOOR PLANS

DESIGN UPDATES / DRAFT FIRST FLOOR PLAN

DESIGN UPDATES / DRAFT SECOND FLOOR PLAN

DESIGN UPDATES / DRAFT THIRD FLOOR PLAN

DESIGN UPDATES / DRAFT BASEMENT FLOOR PLAN

AUDITORIUM VISIONING

AUDITORIUM UPDATE

FOUR THEMES EMERGED FROM THE WORKSHOPS AND SURVEY RESULTS

PRIORITY TO SCHOOL - STUDENTS, FACULTY, AND PROGRAMS

- Because the venue is located within the Lincoln-Eliot Elementary School, priority should be given to the educational experience and access of the school itself.

ACCESS TO COMMUNITY

- Stemming from a lack of access to Newton North High School auditorium, the community is concern that access to the Lincoln-Eliot auditorium will be similar.

FACILITY IMPROVEMENT

- Due to the current disrepair of the venue, the priority is to renovate and improve the facility to accommodate professional presentations and productions.
- The goal to create a multi-use community venue with quality equipment and experience, but there is not much need for top-of-line equipment.

OUALITY EXPERIENCE

- A balance of access for students and the community indicates the venue is a combination of an elementary school and a professional setting is important to the group.

AUDITORIUM UPDATE

IN CONSIDERATION OF THE USES, THE GROUPS FELT THAT VENUE SHOULD INCLUDE:

- Basic house sound, lighting and communications package with infrastructure for rental equipment
- Projector and screen
- Broadcast capabilities, including interface with Newton Public TV and high-speed internet
- Recording options
- Stage-level accessible dressing room
- Stage-level storage
- Choir risers (removable or built into front of stage)
- Back-of-house dressing rooms and green rooms to support up to 30 people with options for overflow.
- Easy loading access for instruments, sets, costumes, etc.
- Security
- Front-of-house amenity spaces including public adult restrooms, concession area and common gathering space
- Easy-to-use and easy-to-operate systems
- Seating capacity: approximately 400 seats

BUILDING PERFORMANCE BUILDING ENVELOPE

BUILDING PERFORMANCE

BUILDING ENVELOPE

BUILDING ENVELOPE / EXTERIOR WALL

EXISTING CONDITIONS - EAST WALL

BUILDING ENVELOPE / EXTERIOR WALL

EXISTING CONDITIONS - WEST WALL

ENERGY & LCCA FRAMING THE DISCUSSION

ALL-ELECTRIC

ALL-ELECTRIC

NET ZERO* ALL-ELECTRIC

#1

VRF

Overhead

Ventilation

#2

Air Cooled Heat Pump Chiller & **Electric Boiler**

Displacement Ventilation

#3

Ground Source Heat Pump

> Displacement Ventilation

*CAN ACHIEVE AND EUI OF 25 MAX.

ALL-ELECTRIC

ALL-ELECTRIC

NET ZERO ALL-ELECTRIC

#1

VRF

Overhead Ventilation

MULTIPLE SMALL ROOFTOP UNITS

VENTILATION SUPPLIED OVERHEAD #2

Air Cooled Heat Pump Chiller & **Electric Boiler**

Displacement Ventilation

#3

Ground Source Heat Pump

> Displacement Ventilation

SIMILAR TO #2 BUT GROUND USED INSTEAD OF AIR FOR HEAT **TRANSFER** (MORE EFFICIENT)

DISPLACEMENT VENTILATION VS. MIXING VENTILATION

- Improved indoor air quality (IAQ)
- Improved acoustics
- Improved thermal comfort
- Reduced energy

ENERGY & LCCA FINDINGS

QUALITATIVE COMPARISON

		EUI	Net Zero	Carbon Emissions	Indoor Air Quality	Acoustics	Annual Energy Cost	Annual Maintenance Cost	Annual Savings	Capital Investment Cost	Lifetime Savings	Discounted Payback	Eversource Incentive
#1	VRF (BOD)	ं		0	0	0	ं	0	ं	•	NA	NA	ं
#2	Air Cooled Heat Pump Chiller & Electric Boiler	0		0	•	•	0	•	0	•	0	•	ं
#3	Ground Source Heat Pump	•	~	•	•	•	•	•	•	ं	•	ं	•

QUANTITATIVE COMPARISON

		EUI	Net Zero	Carbon Emissions (mTons)	Annual Energy Use (MWh)	% Provided by PV	Annual Energy Cost	Annual Energy Cost/sf	Annual Maintenance Cost	Annual Savings	Capital Investment Cost	Lifetime Savings	Discounted Payback	Eversource Incentive *
#1	VRF (BOD)	33.9	No	598.7	972.4	48%	\$242,435	\$2.47	\$78,246	NA	\$6,386,755	NA	NA	\$52,929
#2	Air Cooled Heat Pump Chiller & Electric Boiler	30.7	No	542.6	881.1	53%	\$212,510	\$2.17	\$70,240	\$37,931	\$6,559,370	\$1,174,236	5 yr	\$74,394
#3	Ground Source Heat Pump	23	Yes	406.9	660.8	70%	\$156,047	\$1.59	\$70,740	\$93,894	\$8,853,045	\$2,104,579	36 yr	\$213,181

All values are approximate and subject to change with further analysis.

^{*}Eversource incentives for reference only. Not included in LCCA savings.

COST COMPARISON

		EUI	HVAC Capital Investment Cost	Eversource Incentive *	Net After Incentive	HVAC Cost Delta	HVAC Cost Delta w/ Incentive	Total Construction Cost Delta	Total Construction Cost Delta w/ Incentive
#1	VRF	33.9	\$6,386,755	\$52,929	\$6,333,826				
#2	Air Cooled Heat Pump Chiller & Electric Boiler	30.7	\$6,559,370	\$74,394	\$6,484,976	3%	2%	0.42%	0.37%
#3	Ground Source Heat Pump	23	\$8,853,045	\$213,181	\$8,639,864	39%	36%	6.01%	5.62%

All values are approximate and subject to change with further analysis.

^{*}HVAC system #1 and 2 are only eligible for Eversource Path 2. System #3 is eligible for Path 1 ZNE Ready.

ACTIVITIES & DECISION POINTS

Activities performed

- Collect existing usage data and proposed occupancy schedule
- Energy modeling
- Determine site locations for PV and prelim design from Solect
- Develop enclosure assemblies
- Economic Engineering Assessment (LCCA) of HVAC system options
- Cost estimates for MEP system options

Schedule

- Late April complete LCCA
- September Present Life Cycle Cost Assessment
- Decide on HVAC option for project

WATER REUSE LCCA FINDINGS

WATER REUSE FOR IRRIGATION LCCA

Water Demand

	gallons	Pecent Reduced by Reuse
Flushing Demand	748250	0%
Cooling Tower Demand	0	0%
Irrigation Demand	278671	95%

Water Reuse Capital Cost

Reuse Design	Estimated Cost	No Reuse Design	Estimated Cost
Rainwater reuse system (25,000gal tank)	\$330,197	Min required stormwater retention system	\$0
Reuse piping to WC/urinals	\$0	Potable only piping	\$0
Reuse piping to cooling tower	\$0		
Reuse piping to irrigation			
TOTAL	\$330,197	TOTAL	\$0

DELTA \$330,197

Water Reuse Payback

Payback Period Calulation - Septic		Payback Period Calulation - Sewer			
Estimated demand savings in gallon/year	264,737	Estimated demand savings in gallon/year	264,737		
Current water cost per gallon	-	Current water cost per gallon	\$0.0136		
Estimated annual water cost	n/a	Estimated annual water cost	\$3,600.43		
		Current sewer cost per gallon*	\$0.00		
		Estimated annual sewer cost	\$0.00		
Annual O&M Cost		Annual O&M Cost			
Payback period in years	n/a	Payback period in years	92		

Notes: Assumes a separate water meter for irrigation, which will not incur sewer rates and will be billed as water only

EMBODIED CARBON LCA FINDINGS

WHAT IS EMBODIED CARBON

Image: EC3

METRIC: GLOBAL WARMING POTENTIAL (GWP)

UNITS: kgCO₂e

TOOL: LIFE CYCLE ASSESSMENT

e = equivalence which means all greenhouse gases (CO2, CH4, N2O, HFCs, PFCs, SF6, NF3)

HIGH CARBON MATERIALS

STRUCTURE & ENCLOSURE

lmage Credit: MGA - Wood Innovation Design Centre

HIGH CARBON MATERIALS

CONCRETE

RESULTS - BUILDING REUSE

Baseline **New Construction**

2,562,612 kg Co2e

Proposed Design Add/Reno

764,716 kg Co2e

69% reduction

BASELINE

• Typical new construction components instead of reuse

PROPOSED DESIGN

- Reused majority of existing structure and facade
- New addition

RESULTS - BUILDING REUSE

RESULTS - CONCRETE DESIGN OPTION

Current Design Additional SCM 10% reduction

CURRENT DESIGN

• Regional Average 20% Supplemental **Cementitious Material (SCM)**

ADDITIONAL SCM DESIGN OPTION

Foundations: 50% SCM

• Slabs: 30% SCM

LOW CARBON DESIGN

LOW CARBON DESIGN ELEMENTS

- Brick cladding on addition
- Mineral wool insulation above grade
- Carbon capture CMU
- Low carbon drywall
- Exposed ceiling in library
- Durable, long-life, extended producer programs for interior finishes
- Design for deconstruction

EMBODIED CARBON WOOD CONSTRUCTION ALTERNATIVES

STEEL FRAME

CONSTRUCTION TYPE IIB NON-COMBUSTIBLE, UNPROTECTED **BASE DESIGN**

HEAVY TIMBER

CONSTRUCTION TYPE IV 1-HR RATED STRUCTURE

WOOD FRAMING & HEAVY TIMBER

CONSTRUCTION TYPE V & IV COMBUSTIBLE & 1-HR RATED

WOOD FRAMING & STEEL FRAME

CONSTRUCTION TYPE V & IIB COMBUSTIBLE & NON-COMBUSTIBLE

EMBODIED CARBON

LESS

LEAST

LESS

CONSTRUCTION COST

\$\$ \$65/sf \$\$\$\$

\$80/sf

Does not include potential added costs to fire-rating existing steel structure & floor acoustics

\$\$\$ \$70/sf

Includes added costs for fire wall. Does not include floor acoustic measures.

\$\$ \$65/sf

Includes added costs for fire wall. Does not include floor acoustic measures.

DESIGN/SPACE **FUNCTIONALITY**

CURRENT DESIGN

- Structure readily accommodates large spans in Gym, Library, and Lobby
- Composite metal & concrete floors provide good acoustic properties
- Materials and manufacturers are plenty and easily available
- Less structural depth
- Performance is better (deflection & vibration)
- More flexibility for future renovation & expansion

MODERATE IMPACT TO **CURRENT DESIGN**

- Structure can readily accommodate large spans in Gym, Library, and Lobby
- Concealed connections detailing required
- More structural depth which will impact ceiling heights & MEP
- Second floor acoustic measures require topping slab & possible acoustic mat
- Materials and manufacturers have greater complexity/limited sourcing. Potential for delays

NEGATIVE IMPACT TO CURRENT DESIGN

- Gym required to be long-span structure (heavy timber and glue-lam.)
- Current building geometry is not optimized for wood (no stacking, span is not appropriate, deeper structure)
- Requires double height shear walls impacting windows/openings
- More structural depth which will impact ceiling heights & MEP
- Second floor acoustic measures require topping slab & possible acoustic mat
- Fire wall and rated vestibules required between Addition & Existing Building
- Materials and manufacturers have greater complexity/limited sourcing. Potential for delays

NEGATIVE IMPACT TO CURRENT DESIGN

- Gym required to be long-span structure (steel frame and long span joists)
- Current building geometry is not optimized for wood (no stacking, span is not appropriate, deeper structure))
- Requires double height shear walls impacting windows/openings
- More structural depth which will impact ceiling heights & MEP
- Second floor acoustic measures require topping slab & possible acoustic mat
- Fire wall and rated vestibules required between Addition & Existing Building
- Materials and manufacturers have greater complexity/limited sourcing. Potential for delays
- Mix contractors, complexity with coordination