

LINCOLN-ELIOT ELEMENTARY SCHOOL

SITE PLAN APPROVAL (DRC MEETING)

NEWTON, MA 11 MAY 2022

PREPARED FOR

David Fleishman, Superintendent

AGENDA /

- 1 SITE ACCESSIBILITY
- 2 SITE LIGHTING CONCEPT
- **ENERGY & LCCA**
- WATER REUSE LCCA
- 5 EMBODIED CARBON LCA

SITE ACCESSIBILITY

WALKWAY / RAMP TO MAIN ENTRANCE

CROSS SECTION OF THE CURRENT PROPOSED SITE WALKWAYS & RAMPS

TOTAL LENGTH OF RAMP + SLOPED WALKWAY = 221'-5'

WALKWAY / RAMP TO MAIN ENTRANCE

WALKWAY / RAMP TO MAIN ENTRANCE

TOTAL LENGTH REQUIRED FOR 4.75% SLOPED WALKWAY = 270'-5"

SITE LIGHTING CONCEPT

SITE LIGHTING CONCEPT

LIGHTING DESIGN:

- OPTIMIZE ENERGY PERFORMANCE
- LED FIXTURES
- LIGHTING CONTROL
- DARK SKY COMPLIANT
- MEET LIGHTING BOUNDARIES
- PHOTOMETRICS WILL BE PROVIDED

BUILDING EXTERIOR ELEVATIONS

BUILDING EXTERIOR ELEVATIONS

EXTERIOR ELEVATION - WEST (TRUE)

EXTERIOR ELEVATION - EAST (TRUE)

BUILDING EXTERIOR ELEVATIONS

EXTERIOR ELEVATION - NEW ADDITION - SOUTH (TRUE)

EXTERIOR ELEVATION - SOUTH (TRUE)

ENERGY & LCCA FINDINGS

HVAC SYSTEM OPTIONS

ALL-ELECTRIC

ALL-ELECTRIC

ALL-ELECTRIC

#1

VRF

Overhead Ventilation #2

Air Cooled Heat Pump Chiller & **Electric Boiler**

Displacement Ventilation

#3

Ground Source Heat Pump

> Displacement Ventilation

HVAC SYSTEM OPTIONS

QUALITATIVE COMPARISON

		EUI	Carbon Emissions	Indoor Air Quality	Acoustics	Annual Energy Cost	Annual Maintenance Cost	Annual Savings	Capital Investment Cost	Lifetime Savings	Discounted Payback	Eversource Incentive
#1	VRF	\circ	ं	0	0	ं	0	ं	•			\circ
#2	Air Cooled Heat Pump Chiller & Electric Boiler	0	0	•	•	0	•	0	•	0	•	
#3	Ground Source Heat Pump	•	•	•	•	•	•	•	ं	•	\circ	•

WATER REUSE LCCA FINDINGS

WATER REUSE FOR IRRIGATION LCCA

Water Demand

	gallons	Pecent Reduced by Reuse
Flushing Demand	748250	0%
Cooling Tower Demand	0	0%
Irrigation Demand	278671	95%

Water Reuse Capital Cost

Reuse Design	Estimated Cost	No Reuse Design	Estimated Cost
Rainwater reuse system (25,000gal tank)	\$330,197	Min required stormwater retention system	\$0
Reuse piping to WC/urinals	\$0	Potable only piping	\$0
Reuse piping to cooling tower	\$0		
Reuse piping to irrigation			
TOTAL	\$330,197	TOTAL	\$0

DELTA \$330,197

Water Reuse Payback

Payback Period Calulation - Septic		Payback Period Calulation - Sewer		
Estimated demand savings in gallon/year	264,737	Estimated demand savings in gallon/year	264,737	
Current water cost per gallon -		Current water cost per gallon	\$0.0136	
Estimated annual water cost	n/a	Estimated annual water cost	\$3,600.43	
		Current sewer cost per gallon*	\$0.00	
		Estimated annual sewer cost	\$0.00	
Annual O&M Cost		Annual O&M Cost		
Payback period in years	n/a	Payback period in years	92	

Notes: Assumes a separate water meter for irrigation, which will not incur sewer rates and will be billed as water only

EMBODIED CARBON LCA FINDINGS

WHAT IS EMBODIED CARBON

Image: EC3

METRIC: GLOBAL WARMING POTENTIAL (GWP)

UNITS: kgCO₂e

TOOL: LIFE CYCLE ASSESSMENT

e = equivalence which means all greenhouse gases (CO2, CH4, N2O, HFCs, PFCs, SF6, NF3)

LIFE CYCLE ASSESSMENT

RESULTS - EMBODIED CARBON

Baseline

2,562,612 kg Co2e

Proposed Design

764,716 kg Co2e

69% reduction

BASELINE

• Typical new construction components instead of reuse

PROPOSED DESIGN

• Reused majority of existing structure and facade

LOW CARBON DESIGN ELEMENTS

(SAME IN BASELINE & PROPOSED)

- Brick cladding on addition
- 20% SCM concrete mix
- Mineral wool insulation above grade
- Low carbon CMU (TBD)
- Low carbon drywall (TBD)
- Exposed ceiling in library

For Further Information:

- » www.newtonma.gov/gov/building/capital_projects
- » www.lincolneliot-necp-projects.com
- » Alejandro Valcarce, AIA, Deputy Commissioner Newton Public Buildings; avalcarce@newtonma.gov
- » Vivian Varbedian, Project Manager, Hill International; vvarbedian@hillintll.com

